Skeletal reduction is a common feature among deep-sea fishes that have diversified from shallow-water relatives, such as snailfishes. These skeletal reductions may be an adaptation to environmental conditions of high pressures, low temperatures, declining luminosity and limited food availability. Snailfishes (family Liparidae) are found across a large bathymetric range (0 – >8,000 m), with intertidal ancestors giving rise to a large clade of deep-sea species. We used microcomputed tomography (micro-CT) to estimate average bone mineral density and examine jaw, pectoral girdle, and neurocranium morphology. Our results suggest at least three mechanisms of skeletal reduction: (1) reduction of bone size, (2) reduction of bone density, and (3) loss of skeletal elements. First, using phylogenetic generalized least squares (PGLS) analysis, we found that the change in cranial dimensions with depth was not uniform. While the size of the maxilla, dentary, and pectoral girdle decreased with greater depth, length of the upper premaxilla and the neurocranium did not vary with collection depth. Second, average density of the lower jaw decreased with increasing depth. Lastly, the ventral suction disc has been lost multiple times within the deep-sea lineage. While all three methods are seen in snailfishes, other groups may use some or all of these mechanisms to different extents. Some mechanisms of skeletal reduction may be more advantageous than others. The extent to which a structure is retained in deep-dwelling fishes may indicate its functional importance. Variable skeletal reduction in the family Liparidae provides insights into the physiological adaptations that allow fishes to survive in deep-water environments. We conclude that some skeletal elements are maintained at the expense of others as fishes balance the functional demands of life in the deep sea.