Additive manufacturing - the process behind 3D printing - has been growing in widespread use since the introduction of the first commercially-available desktop printer and later improvements in cost, quality, and accessibility. Expanding horizontally and vertically in the global market, the 3D printing industry has been one that not only appeals to hobbyists, but has demonstrated potential as a solution to a variety of challenges faced around the world today, including those in biotechnology, aerospace, and industrial engineering. Seeking to take advantage of the increasing demands in 3D printing technologies, a number of companies and open-source organizations are offering new types of 3D printers and associated software. However, the rapid growth and diversity of the products being released have resulted in a loss of universal standards. Often indented to be accessible and reliable regardless of a user’s technical background, 3D printing technologies have been known to require consumers to learn the more technical aspects of their printer, G-Code, slicing software, materials, etc. in order to configure their overall setup and reduce the prevalence of errors. Our project aims at using advanced parsing strategies, program optimization, and statistical analysis to provide a universal, easy-to-use tool that both analyzes and optimizes G-Code files prior to printing. By automating the common fixes users are required to implement in their G-Code files and identifying common factors in 3D prints (material warping, inadequate temperatures, speed of extruder heads, etc.), this tool is intended to be usable for any consumer, regardless of engineering or design experience. Ultimately, our goal is to help provide a universal solution to the lack of consistency between products, and help leverage the promising field of 3D printing to reach its potential as both a home essential and reliable solution in fields such as biotechnology and industrial engineering.